Level: Intermediate to Advanced
Prerequisite: Familiarity with data warehousing concepts and requirements.
The 2020s are going to require a modern data warehouse to meet demanding new requirements for machine learning, data variety, scale, and real-time analytics—and these will often be implemented in part or entirely in the cloud.
In this course, you will learn about the major cloud data warehouse platforms, their ability to support the modern data warehouse, key architectural features, and what makes them different from one another. This course will help you understand why data warehouse platforms differ greatly in performance, operating cost, scalability, and ease of development for certain data warehouse requirements.
We will cover the technical reasons why scaling is sometimes easy and sometimes very hard—at a level that architects, strategists, and decision makers can understand. You need this understanding to choose the best platform for your cloud data warehouse or workload—and to avoid platform mistakes that can be catastrophic.
You Will Learn
- Key concepts of modern data warehouse architecture
- Platform architecture and scalability
- Performance and cost
- Workload requirements and how to apply them in selection
- Data and analytics variety
- Machine learning and advanced analytics inside the data warehouse
- Near real-time data and analytics
- Relevant features of leading cloud data warehouse platforms such as AWS Redshift, Azure Synapse Analytics, Cloudera Data Warehouse, Data Bricks Data Lakehouse, Google BigQuery, Oracle ADW, Snowflake Data Warehouse, and Teradata Vantage
Geared To
- Data architects
- Data strategists
- Decision recommenders/decision makers
- Data analysts/data scientists
- Project managers
- Enterprise/cloud architects