RESEARCH & RESOURCES

TDWI Checklist Reports

TDWI Checklist Reports provide an overview of success factors for a specific project in business intelligence, data warehousing, or a related data management discipline. Companies may use this overview to get organized before beginning a project or to identify goals and areas of improvement for current projects.


Data Modernizations for the Telecommunications Industry Amdocs

TDWI Checklist Report | Data Modernization for the Telecommunications Industry

December 2, 2016

Now is the time for the telecommunications industry to devise a strategy for modernization of the data management environment in ways that streamline the end-to-end processes for ingesting, transforming, loading, reporting, delivering, and analyzing data. This Checklist Report describes a vision for the future that includes using an architecture that leverages a hybrid environment combining traditional enterprise data warehouse (EDW) techniques with the ability to deploy augmentation tactics on big data environments, such as those built using the Hadoop ecosystem.


Checklist Pentaho Data Lakes

TDWI Checklist Report | Emerging Best Practices for Data Lakes

December 1, 2016

Forward-looking businesses need discovery-oriented analytics, but discovery analytics tends to work best with large volumes of raw source data. The data lake enables analytics with big data and other diverse sources. This TDWI Checklist Report discusses many of the emerging best practices for data lakes.


Evolving Toward Modern DW checklist cover

TDWI Checklist Report | Evolving Toward the Modern Data Warehouse: What Enterprises Require Today, What They'll Need Tomorrow

November 10, 2016

User organizations facing new and future requirements for big data, analytics, and real-time operation need to start planning today for the data warehouse of the future. This Checklist Report drills into seven key recommendations for solution design, listing and discussing many of the new vendor and open source product types, functionality, and user best practices that will be common in the near future, along with the business case and technology strengths of each.


Checklist cover Emerging Design Patterns

TDWI Checklist Report | Emerging Design Patterns for Data Management

November 8, 2016

This Checklist Report drills into some of the emerging design patterns and platforms for data that modern data-driven organizations are embracing. The goal of the report is to accelerate users’ understanding of new design patterns and data platforms so they can choose and use the ones that best support the new data-driven goals of their organizations.


Checklist thumb Data Centic Security

TDWI Checklist Report | Data-Centric Security: Seven Best Practices for Protecting Your Most Sensitive Data

November 7, 2016

This checklist defines data security and data-centric security and discusses best practices and enabling technologies to help make data more secure.


Syncsort Checklist cover image

TDWI Checklist Report | Building a Data Lake with Legacy Data

November 3, 2016

This checklist will help you and your team plan and launch successful data lake projects with your legacy data sources. It reviews the critical success factors for these projects as well as the risks and issues to mitigate.


TDWI Checklist Report Series: Steps to Achieving Big Data Analytics Maturity

October 12, 2016

TDWI research indicates that organizations view analytics as an opportunity to help in better decision making, to better understand customers, and to improve business performance.


Informatica Data Lake Management Checklist Cover

TDWI Checklist Report | Best Practices for Data Lake Management

October 12, 2016

A data lake ingests data in its raw, original state, straight from data sources, with little or no cleansing, standardization, remodeling, or transformation. These and other data management best practices can then be applied flexibly as diverse use cases demand. Most data lakes are built atop Hadoop, which enables a data lake to capture, process, and repurpose a wide range of data types and structures with linear scalability and high availability.


SAS Predictive Analytics for Marketing Checklist cover image

TDWI Checklist Report | Marketing Analytics Meets Artificial Intelligence: Six Strategies for Success

October 10, 2016

Marketers today understand that they can no longer send out mass messaging to an entire customer list for a campaign. They need to be much more selective. This Checklist explores how artificial intelligence can enhance marketing analytics and to help companies both better understand their customers and deliver a great customer experience.


TDWI Membership

Get immediate access to training discounts, video library, research, and more.

Find the right level of Membership for you.